Разделы

Телеком Инфраструктура Мобильная связь Техника Импортонезависимость

В МФТИ разработали компактные антенные решетки для приложений 5G

Ученые МФТИ создали компактную направленную антенную решетку с высоким коэффициентом усиления и широкой областью применения в сфере технологий 5G. Антенна показала усиление более чем на 11,3 дБ в диапазоне частот от 2,5 до 4,5 ГГц. В первую очередь миниатюрные антенные решетки могут использоваться в беспроводной связи, где стоит задача управления лучом с высоким коэффициентом усиления и при этом выделяемое место под излучатель крайне ограничено. Результаты работы опубликованы в журнале Physica Status Solidi. Об этом CNews сообщили представители МФТИ.

Любая антенна позволяет передавать информацию (сигнал) на расстояние, и для ее успешной эксплуатации необходимо знать, куда направлен сигнал, его мощность, а также КПД самой антенны. Несколько антенн, расположенных рядом, называют антенной решеткой, а изменением параметров решетки управляют ее лучом. Чем больше антенн, тем более узкий луч и тем больше энергии.

Процесс создания компактной антенной решетки на 2,5–4,5 ГГц, состоящей из четырех элементов, спроектированных с использованием алгоритмов оптимизации и изготовленных с применением аддитивных технологий 3D-печати и металлизации поверхности

Ключ к эффективности антенной решетки, разработанной в МФТИ, лежит в трехмерной геометрии каждого излучателя. Как правило, антенные решетки по многим причинам стараются делать плоскими, тем самым усложняя поиск идеальной геометрии.

«Перед нами стояла задача создать небольшую (относительно длины волны) антенную решетку, которая могла бы излучать энергию в заданном направлении с высокой эффективностью. Данных характеристик мы смогли добиться при помощи использования специальных алгоритмов оптимизации в ходе решения электродинамической задачи», — сказал Владимир Бурцев, сотрудник лаборатории радиофотоники МФТИ.

Ученые задали начальные параметры и требования, а оптимизационные алгоритмы построили геометрию, наиболее соответствующую поставленным задачам. Для качественной работы антенной решетки все ее размеры необходимо было соблюсти до сотых долей миллиметра. Для реализации такой точности в лаборатории применяют свой оптимальный и бюджетный способ изготовления — фотополимерную 3D-печать каркаса полимерной смолой с последующим электрохимическим покрытием формы металлом.

Анатомия ЦОД: какие инженерные решения актуальны? Инфографика
Инженерия для ЦОД

«Мы проанализировали работу получившейся антенной решетки и пришли к выводу, что ее высокие энергетические показатели обусловлены конструктивной интерференцией многих элементарных колебаний внутри структуры. В каждом элементе антенны заложена определенная энергия, и такие вклады могут складываться либо деструктивно, что чаще всего и бывает, либо конструктивно, как в данном случае, что и обеспечивает высокую энергоэффективность нашей антенной решетки. По своим общим показателям она примерно в два раза лучше аналогов. Ее нетривиальная форма дает высокий КПД. Знания электродинамики позволят с легкостью перестроить рабочие частоты, слабо меняя саму геометрию и сохраняя принцип сложения колебаний. Настроив решетку на другие диапазоны, мы можем работать в зоне Wi-Fi или радиочастотных меток (RFID), осуществляя мониторинг или считывая маркировку в магазине, или уйти в более высокие частоты 5G и отслеживать работу “умных” устройств», — сказал Дмитрий Филонов, руководитель лаборатории радиофотоники Центра фотоники и двумерных материалов, ведущий научный сотрудник НИЦ телекоммуникаций МФТИ.

Исследование поддержано программой «Приоритет 2030».