Разделы

ПО Софт ИТ в банках ИТ в госсекторе Искусственный интеллект axenix

Сбербанк и «Сколтех» научились прогнозировать засухи на год вперед

Ученые из «Сколтеха» совместно с коллегами из Сбербанка предложили модели глубокого обучения для прогнозирования засух по климатическим данным. Долгосрочные прогнозы такого рода нужны сельскохозяйственным предприятиям — для планирования своей деятельности, страховщикам и банкам — для оценки соответствующих рисков и уточнения кредитных рейтингов корпоративных заёмщиков. Исследование опубликовано в престижном научном журнале первого квартиля Environmental Modelling & Software; препринт доступен в онлайн-библиотеке arXiv. Об этом CNews сообщили представители Сбербанка.

Чтобы планировать сельскохозяйственную деятельность, оценивать и страховать риски, связанные с возможностью наступления засухи, нужны точные и долгосрочные прогнозы. Проблема качественного прогнозирования засухи до сих пор не решена из-за стохастической природы (велика роль случайности) самого этого явления и сложности используемых данных.

Исследователи из «Сколтеха» и Сбербанка предложили комплексный нейросетевой подход для средне- и долгосрочного прогнозирования засух: на период от нескольких месяцев до года. Решение основано на использовании пространственно-временных нейронных сетей и доступных ежемесячных климатических данных и объединяет современные нейросетевые подходы с классическими методами.

Модели протестировали на данных по пяти регионам, расположенным на разных континентах и в разных климатических зонах, — это Польша, штат Миссури в США, бразильский штат Гояс, индийский штат Мадхья-Прадеш и северная часть Казахстана.

«В ходе исследования было установлено, что для среднесрочного прогнозирования наилучшие результаты показала наша модификация модели EarthFormer на основе трансформера, а для долгосрочного прогнозирования — модификация модели ConvLSTM, — сказал научный руководитель исследования, старший преподаватель «Сколтеха» и заведующий Лабораторией прикладных исследований «Сколтех-Сбербанк» (LARSS) в Центре прикладного ИИ Алексей Зайцев. — Наша модель показывает высокое качество для разных климатических зон. За счет использования надежных методов ИИ ее качество останется высоким следующие 10 лет».

Какая CRM подойдет вашей компании? Тест
Цифровизация

Первый автор работы, старший инженер-исследователь Центра прикладного ИИ «Сколтеха» Александр Марусов: «Прогноз засухи имеет первостепенное значение для многих регионов нашей страны. В том числе и для моего родного края — Астраханской области. Однако моделирование этого природного явления достаточно сложно ввиду необходимости учета различных факторов, в том числе и глобального потепления. Наши модели позволяют строить качественные прогнозы засухи на год вперед».

Результаты исследования также будут применяться Сбербанком в системе управления рисками.

Назар Сотириади, управляющий директор департамента интегрированного риск-менеджмента Сбербанка, соавтор статьи: «В России климатические риски не так заметны, как в странах с более высокой плотностью инфраструктуры, однако они уже существенно влияют на экономику. Засухи создают риски для сельского хозяйства, объектов энергетики и населения. Мы используем результаты совместных исследований с коллегами из «Сколтеха» для повышения точности наших оценок в страховании и кредитовании. В ближайшие годы управление этими рисками может иметь более существенное влияние на бизнес, чем мы предполагали три–пять лет назад. В таких задачах без модельных оценок не обойтись».