Разделы

Цифровизация

Ученые НГУ создали цифровые двойники ампутантов, численную модель углепластикового протеза и прототип культиприемной гильзы 

Научная группа по биомеханике и медицинскому инжинирингу, созданная на базе Математического центра в Академгородке (учрежден Новосибирским государственным университетом и Институтом математики им. С.Л. Соболева СО РАН), реализует проекты, направленные на создание высокотехнологичных продуктов, в том числе цифровых, для протезной отрасли. Об этом CNews сообщили представители НГУ.

«В настоящий момент в нашей стране остро ощущается нехватка научно-исследовательских работ в области разработки протезов, что затрудняет создание технологичных продуктов, призванных обеспечить ампутантам полноценную жизнь. В то же время протезирование является актуальной проблемой в России, так как количество людей, нуждающихся в такого рода помощи, растет. Наши проекты направлены на решение данной проблемы и повышение качества жизни пациентов, нуждающихся в реабилитации и высокотехнологичном протезировании», — сказал руководитель группы к.ф.-м.н. Владимир Сердюков.

Цифровой двойник ампутанта — математическая модель опорно-двигательного аппарата человека, описывающая кинематику и динамику движений. С его помощью появляется возможность проанализировать характеристики походки, работы мышц и энергозатраты ампутанта без проведения многочисленных исследований в центре протезирования. Визуализация двойника позволяет подробно рассмотреть особенности и патологии походки, а представление данных в численном виде позволяет сравнить результаты с исследованиями и стандартами.

Численная модель протеза стопы — математическая модель, описывающая физические свойства материалов, геометрию и позволяющую исследовать влияние нагрузок на протез.

Проект по разработке цифрового двойника ампутанта нижних конечностей направлен на исследование биомеханики с помощью компьютерного моделирования для решения целого ряда проблемных задач протезно-ортопедической отрасли: определение оптимальных видов и конструкции протезов для конкретного пациента, определение причин, затрудняющих пациенту использование протеза, а также разработка и тестирование новых типов протезов.

Моделирование будет полезно как на этапе выбора протеза, благодаря «примерке» различных протезов на двойника, так и на этапе реабилитации. Появляется возможность фиксировать улучшения с помощью количественных показателей и прогнозировать ход реабилитации. Данный проект, руководителем которого является Владимир Сердюков, был поддержан Российским научным фондом в рамках конкурса «Проведение инициативных исследований молодыми учеными» Президентской программы исследовательских проектов.

«Конечная наша цель – разработка собственного программного обеспечения, позволяющего наглядно отобразить биомеханические показатели конкретного пациента и дать рекомендации по подбору и использованию протеза или проследить ход реабилитации ампутанта. Основными пользователями данного ПО станут специалисты протезных и реабилитационных клиник, с рядом которых уже налажено сотрудничество. Подобных решений сегодня нет в мире», — сказал Владимир Сердюков.

Цифровой двойник ампутанта нижних конечностей уже создан, однако работа над его усовершенствованием продолжается. Ученые намерены добавить в модель данные с системы захвата движений.

Также ученые разработали численную модель протеза стопы, благодаря которой появляется возможность разработать изначально оптимальную геометрию протеза без многочисленных натурных экспериментов с прототипами. В качестве материала протеза исследователи изначально заложили карбон, как один из наиболее перспективных материалов, позволяющих достичь необходимые эксплуатационные и прочностные характеристики изделия.

Почему премиальная поддержка «1С» становится преимуществом для заказчика?
цифровизация

«В данный момент мы проводим численные эксперименты, используя геометрию существующей на рынке немецкой стопы, однако материал заложили тот, который доступен в России. Это приводит к необходимости оптимизировать геометрию изделия, чтобы не столкнуться с проблемой его поломки во время использования пациентом. В дальнейшем мы хотим разработать уже собственный протез, а также рассматриваем возможность производства протезов стоп с помощью аддитивных технологий», — отметил Владимир Сердюков.

В 2024 г. с помощью 3D-печати группой был создан прототип культиприемной гильзы руки. Использование данной технологии позволило сделать конструкцию одновременно прочной и легкой, с отверстиями для вентиляции культи, что крайне важно для обеспечения гигиеничности использования изделия пациентом. Использовать его можно не только в качестве культеприемной гильзы, но и в качестве рабочего протеза предплечья.

«Главное преимущество разработанной нами гильзы — ее адаптивность и возможность использовать готовые изделия, а не изготавливать их индивидуально, что занимает много времени. Наша гильза снабжена системой шнуровки, как в горнолыжных ботинках, что позволяет «подгонять» ее под конкретного пациента. Кроме того, пациент сможет самостоятельно ослаблять или затягивать гильзу в течении дня, например, при физической активности, чтобы она идеально соответствовала размеру культи. Сейчас мы дорабатываем нашу конструкцию и планируем отдать этот продукт на тестирование ампутантом», — сказал Владимир Сердюков.

В настоящий момент студент четвертого курса Инженерной школы Механико-математического факультета НГУ Назар Коновалов разрабатывает устройство для изучения биомеханики ампутантов. Молодой исследователь стал одним из победителей федерального конкурса «Студенческий стартап» и выиграл 1 млн руб. на развитие проекта. Его изобретение — стелька для анализа биомеханики ампутантов, — позволит изучить распределение давления между здоровой ногой и протезом. Это важно для оптимизации подбора протеза и отслеживания хода реабилитации пациента. Данные о пациентах будут собирать в течение дня. Так можно будет отследить изменение походки ампутанта, что невозможно при разовом посещении клиники. Особо важно, что предлагаемое решение позволяет ввести количественную метрику для подбора протезов, а также произвести сбор и анализ данных без привязки к кабинету протезиста.

Илья Батай, ИТ-директор банка «Синара»: На рынке появляются отдельные независимые решения, но в промышленных масштабах использовать их пока страшно
ИТ в банках

«Наше решение позволит помочь оптимизировать подбор протеза. Это облегчает как работу врача-протезиста, так и реабилитацию пациента. Мы ожидаем, что разрабатываемое нами устройство очень поможет людям с ампутацией нижних конечностей, которых в нашей стране достаточно большое количество. Данная разработка поможет выполнить задачи по импортозамещению для нашей страны. Сейчас мы работаем над MVP устройством, но в дальнейшем планируем сделать его с аккумулятором и bluetooth-модулем для большего удобства, а также заняться оптимизацией алгоритма обработки данных и написанием удобного софта и приложения», — сказал разработчик продукта Назар Коновалов.

«Сейчас мы работаем с филиалом «Новосибирский» Московского протезно-ортопедического предприятия. На его базе в сентябре приступим к оцифровке данных людей, нуждающихся в протезировании. Мы благодарны сотрудникам этого учреждения за то, что они предоставили нам доступ к реальным пациентам и внедрению наших разработок», — сказал Владимир Сердюков.